JOURNAL OF
PURE AND
APPLIED ALGEBRA

A note on wild fibers of elliptic surfaces

Reiko Ito ${ }^{\text {a }}$, , Toshiyuki Katsura ${ }^{\text {b, } 1}$
${ }^{a}$ NEC Corporation, 1-10 Nisshincho, Fuchu City, Tokyo 183, Japan
${ }^{6}$ Department of Mathematical Sciences, University of Tohyo, Komaba, Meguro-Ku, Tokyo 183, Japan

Communicated by F. Oort; received 23 February 1994; revised 28 July 1994

0. Introduction

Let k be an algebraically closed field of characteristic p, and $f: S \rightarrow C$ an elliptic surface over k with C a non-singular complete curve. Assume that $f^{-1}(P)=d E$ ($P \in C$) is a multiple fiber with multiplicity d. The multiple fiber is called a tame fiber (resp. a wild fiber) if the order of the normal bundle $\left.\mathcal{O}_{S}(E)\right|_{E}$ is equal to d (resp. less than d). In characteristic 0 , there does not exist a wild fiber by the cohomological flatness. In positive characteristic, however, the existence of wild fibers makes the situation complicated. The notion of wild fiber was introduced in Bombieri and Mumford [1], and Raynaud [5] examined the structure of wild fiber in detail. In this note, we consider elliptic surfaces obtained as quotients of the product of a curve and a supersingular elliptic curve by rational vector fields in positive characteristic. We calculate numerical invariants of wild fibers of such elliptic surfaces (cf. Theorem 3.5). Moreover, we give a characterization of such elliptic surfaces over the projective line p^{1} (cf. Theorem 4.2). To calculate numerical invariants, Raynaud's results on wild fibers play an important role (cf. [5]). For the case of the product of a curve and an ordinary elliptic curve, we already treated this in [3].

1. Preliminaries

In this section, we recall some basic facts on elliptic surfaces and Raynaud's theory on wild fibers. For details, see Bombieri and Mumford [1] and Raynaud [5].

[^0]Throughout this paper, we fix an algebraically closed field k of characteristic $p>0$. For a non-singular complete algebraic variety X of dimension n and a coherent sheaf \mathscr{F} on X, we use the following notation:
\mathcal{O}_{X} : the structure sheaf of X,
$K_{X}:$ a canonical divisor on X,
$b_{i}(X)$: the i th Betti number of X,
$c_{n}(X)$: the nth Chern number of X,
$q(X)$: the dimension of Albanese variety $\operatorname{Alb}(X)$ of X,
$\operatorname{Pic}^{\circ}(X)$: the Picard scheme of X,
$H^{i}(X, \mathscr{F})$: the i th cohomology group with coefficients in \mathscr{F},
$\chi\left(X, \mathcal{O}_{X}\right)=\sum_{i=0}^{n}(-1)^{i} \operatorname{dim}_{k} H^{i}\left(X, \mathcal{O}_{X}\right)$,
Supp \mathscr{F} : the support of \mathscr{F},
$\Gamma(U, \mathscr{F})$: the group of sections of \mathscr{F} over an open set U of X.
For divisors E_{1} and E_{2} on $X, E_{1} \sim E_{2}$ means that E_{1} is linearly equivalent to E_{2}. Sometimes, a Cartier divisor and the associated invertible sheaf will be identified. For a rational number $x,[x]$ denotes the integral part of x.

Now, let $f: S \rightarrow C$ be an elliptic surface defined over k with C a non-singular complete curve. We assume that $f: S \rightarrow C$ is relatively minimal, i.e., no fibers of f contain exceptional curves of the first kind. Let \mathscr{T} be the torsion part of $R^{1} f_{*} \mathcal{O}_{S}$. Since C is a non-singular curve, we have $R^{1} f_{*} \mathcal{O}_{S} \simeq \mathscr{L} \oplus \mathscr{T}$ with an invertible sheaf \mathscr{L}. We denote by $d_{i} E_{i}(i=1,2, \ldots, i)$ the multiple singular fibers of $f: S \rightarrow C$ with multiplicities d_{i}. We have the canonical divisor formula,

$$
\begin{equation*}
K_{S} \sim f^{*}\left(K_{C}-\mathscr{L}\right)+\sum_{i=1}^{\hat{\lambda}} a_{i} E_{i} \tag{1.1}
\end{equation*}
$$

where a_{i} 's are integers such that $0 \leq a_{i} \leq d_{i}-1$, and wherc

$$
\begin{equation*}
-\operatorname{deg} \mathscr{L}=\chi\left(S, \mathcal{O}_{S}\right)+t \quad \text { with } t=\text { length } \mathscr{T} \tag{1.2}
\end{equation*}
$$

We take a multiple fiber $d F$ among $d_{i} E_{i}$'s $(i=1,2, \ldots, \lambda)$, and set $Q=f(d F)$. We denote by a the a_{i} corresponding to the multiple fiber $d F$. We denote by $\omega_{S / C}$ the relative dualizing sheaf on S. We can naturally consider $n F$ as a subscheme of S. The dualizing sheaf ω_{n} of $n F$ is given by

$$
\begin{equation*}
\omega_{n}=\left.\omega_{S / C} \otimes \mathscr{O}_{S}(n F)\right|_{n F} \tag{1.3}
\end{equation*}
$$

We denote by v the order of $\left.\mathcal{O}_{\boldsymbol{S}}(E)\right|_{\mathbf{E}}$. Then, there exists a positive integer γ such that

$$
\begin{equation*}
d=v p^{\gamma} \tag{1.4}
\end{equation*}
$$

(cf. [5, Lemma 3.7.7]). Using the exact sequence

$$
0 \rightarrow \mathcal{O}_{S}(-n F) \rightarrow \mathcal{O}_{S} \rightarrow \mathcal{O}_{n F} \rightarrow 0
$$

we see $\chi\left(\mathcal{O}_{n F}\right)=0$. Therefore, by Raynaud [5, Corollary 3.7.6] and the Serre duality, we have the following:

Lemma 1.1 (Raynaud). Assume $n \geq 2$. If ω_{n} is not trivial, then

$$
\operatorname{dim}_{k} H^{0}\left(n F, \mathcal{O}_{n F}\right)=\operatorname{dim}_{k} H^{0}\left((n-1) F, \mathcal{O}_{(n-1) F}\right)
$$

If ω_{n} is trivial, then
$\operatorname{dim}_{k} H^{0}\left(n F, \mathcal{O}_{n F}\right)=\operatorname{dim}_{k} H^{0}\left((n-1) F, \mathcal{O}_{(n-1) F}\right)+1$.
Lemma 1.2 (Raynaud [5, Lemma 3.7.7]). Assume $n \geq 2$. Then, we have either $\operatorname{ord}\left(\left.\mathcal{O}_{S}(F)\right|_{n F}\right)=\operatorname{ord}\left(\left.\mathcal{O}_{S}(F)\right|_{(n-1) F}\right) \operatorname{or} \operatorname{ord}\left(\left.\mathcal{O}_{S}(F)\right|_{n F}\right)=p \operatorname{ord}\left(\left.\mathcal{O}_{S}(F)\right|_{(n-1) F}\right)$. In the latter case, ω_{n} is trivial.

We denote by $n_{i}(i=0,1, \ldots, \gamma)$ the smallest integer n such that $\left.\mathcal{O}_{S}(F)\right|_{n F}$ is of order $v p^{i}$. By definition, we have $n_{0}=1$, and by Lemma $1.2, \omega_{n_{i}}(i=0,1, \ldots, \gamma)$ is trivial. Using the notation above, we have the following:

Lemma 1.3 (Raynaud [5, Lemma 3.7.9, p. 31]). (i) There exists an integer $k_{i}>0$ such that $n_{i+1}=n_{i}+k_{i} v p^{i}$.
(ii) There exists a positive integer h such that $n_{\gamma}=m h-a$.

Lemma 1.4 (Raynaud [5, Theorem 3.8.1, p. 32]). The length of \mathscr{T} at a point Q of C is given by

$$
\text { length } \mathscr{T}_{Q}=[\chi / d]
$$

where $\chi=d\left\{(1-1 / d)+k_{0}\left(1-1 / p^{\gamma}\right)+\cdots+k_{\gamma-1}(1-1 / p)\right\}$.
Corollary 1.5. Assume $d=p$ and $v=1$. Then,
length $\mathscr{T}_{Q}=\left[n_{1}(p-1) / p\right]$.
Proof. By assumption, we have $\gamma=1$. By Lemma 1.3(i), we have $n_{1}=1+k_{0}$. Therefore, by Lemma 1.4 we have

$$
\chi=p\left\{(1-1 / p)+\left(n_{1}-1\right)(1-1 / p)\right\}=n_{1}(p-1) .
$$

2. Rational vector fields

Let D be a non-zero rational vector field on a non-singular algebraic variety $X . D$ is called a p-closed vector field if there exists a rational function f on X such that $D^{p}=f D$. In particular, D is called additive if $D^{p}=0$. For an affine open covering $\left\{\operatorname{Spec} A_{i}\right\}_{i_{\in I}}$ of X, we set $A_{i}^{D}=\left\{\alpha \in A_{i} \mid D(\alpha)=0\right\}$ for each $i \in I$. Then, Spec $A_{i}^{D}(i \in I)$ glue together to define a quotient surface X^{D}. It is well known that X^{D} is normal. If
D is p-closed, then the canonical projection $\pi_{D}: X \rightarrow X^{D}$ is a finite purely inseparable morphism of degree p. Conversely, if $\pi: X \rightarrow Y$ is a finite purely inseparable morphism of degree p with a normal variety Y, then there exists a p-closed rational vector field D such that $\pi=\pi_{D}$ and $Y=X^{D}$. Moreover, X^{D} is non-singular if and only if D has no isolated singularities. We denote by (D) the divisor associated with D. For details on these facts, see, for example, Rudakov and Shafarevich [6].

Lemma 2.1. Let E be a supersingular elliptic curve and δ a non-zero regular vector field on E. Then, for any point Q of E, there exists a rational function f on E such that $\delta(f)=1$ and such that f is regular at Q.

Proof. Since E is supersingular, the vector field δ is additive. By Ganong and Russell [2, Lemma 3.3.1], there exists a rational function h such that $\delta(h)=1$. If h is regular at Q, then we can take $f=h$. Assume that h has a pole at Q. Then, we take a point P of E such that h is regular at P. There exists a translation T of E such that $T(Q)=P$. We set $f=T^{*}(h)$. Then, f is regular at Q. Since δ is invariant under translation, we have

$$
\delta(f)=\delta\left(T^{*} h\right)=\left(T_{*} \delta\right) h=\delta(h)=1
$$

Now, let C be a non-singular complete curve of genus g. Let P be a point of C, and x a local parameter at P. We take a rational vector field $\Delta=h(\partial / \partial x)$ of C, where h is a non-zero rational function on C. We set

$$
\begin{equation*}
\Delta^{i}=\sum_{j=1}^{i} h_{i j} \frac{\partial^{j}}{\partial x^{j}} \tag{2.1}
\end{equation*}
$$

Then, by definition, we have

$$
\begin{equation*}
h_{11}=h . \tag{2.2}
\end{equation*}
$$

Moreover, denoting $\partial / \partial x$ by ', we have for $i \geq 2$

$$
\begin{align*}
& h_{i 1}=h_{11} h_{i-1,1}^{\prime} \\
& h_{i j}=h_{11}\left\{h_{i-1, j-1}+h_{i-1, j}^{\prime}\right\} \quad(1<j<i) \\
& h_{i i}=h_{11} h_{i-1, i-1}=h^{i} . \tag{2.3}
\end{align*}
$$

In characteristic $p>0$, we have

$$
\begin{equation*}
h_{p j}=0 \quad(2 \leq j \leq p-1) \quad \text { and } \quad h_{p p} \frac{\partial^{p}}{\partial x^{p}}=0 . \tag{2.4}
\end{equation*}
$$

Therefore, as is well known, Δ is additive if and only if $h_{p 1}=0$.
Let P be a zero point of h, and x a local parameter at P. Then, h is expressed as

$$
\begin{equation*}
h=u x^{m} \tag{2.5}
\end{equation*}
$$

where m is a positive integer and where u is a unit at P. By direct calculation, we have the following lemma.

Lemma 2.2. If Δ is additive, then $m \not \equiv 1 \bmod p$. Moreover, $\operatorname{ord}_{P} h_{i j} \geq i(m-1)+j$.

3. Numerical invariants of wild fibers

Let C (resp. E) be a non-singular complete curve (resp. a supersingular elliptic curve) over k. We set $X=E \times C$. Let Δ (resp. δ) be a non-zero additive vector field on C (resp. a non-zero regular vector field on E). Since E is supersingular, δ is additive. Let $\tilde{Q}_{i}(i=1,2, \ldots, \lambda)$ be the zero points of Δ. We denote by m_{i} the order of zero of Δ at \tilde{Q}_{i}. We naturally extend δ and Δ to vector fields on X, which we denote by the same letters. We set $D=\delta+\Delta$. We note that, by Ganong and Russell [2, Lemma 3.7.1], any divisorial p-closed rational vector field on X can be normalized in this form in the case of $C=\mathbb{P}^{1}$. (In this normal form, either δ or Δ may be zero.) We set

$$
\begin{equation*}
S=X^{D} \quad \text { and } \quad B=C^{\Delta} . \tag{3.1}
\end{equation*}
$$

Then, we have a diagram

where pr is the second projection, where f is the morphism induced by pr, and where π and F are natural morphisms. The morphism F is nothing but the Frobenius morphism. In this section, we examine the elliptic surface $f: S=X^{D} \rightarrow B=C^{4}$. We set $Q_{i}=\boldsymbol{F}\left(\tilde{Q}_{i}\right),(i=1,2, \ldots, \lambda)$. By Rudakov and Shafarevich [6, Proposition 1], the multiple fibers of f exist only over $Q_{i}(i=1, \ldots, \lambda)$. By our construction, $f^{-1}\left(Q_{i}\right)$ is a multiple fiber of an elliptic curve E_{i}. By Rudakov and Shafarevich [6, Proposition 1], $\pi^{-1}\left(E_{i}\right)$ is reduced and $\pi^{-1}\left(E_{i}\right)=\operatorname{pr}^{-1}\left(\tilde{Q}_{i}\right)$. Since E is supersingular, E_{i} is also supersingular. We denote by d_{i} the multiplicity of $f^{-1}\left(Q_{i}\right)$. By $\pi^{-1}\left(f^{-1}\left(Q_{i}\right)\right)=$ $\operatorname{pr}^{-1}\left(F^{-1}\left(Q_{i}\right)\right)$ we have $d_{i}\left(\operatorname{pr}^{-1}\left(\tilde{Q}_{i}\right)\right)=p\left(\operatorname{pr}^{-1}\left(\tilde{Q}_{i}\right)\right)$. Therefore, we have $d_{i}=p$ and $f^{-1}\left(Q_{i}\right)=p E_{i}$. Since the Picard variety $\operatorname{Pic}^{0}\left(E_{i}\right)$ has no points of order p, we have ord $\left.\mathscr{O}_{S}\left(E_{i}\right)\right|_{E_{i}}=1$; hence, $f^{-1}\left(Q_{i}\right)$ is a wild fiber.

Lemma 3.1. $\chi\left(S, \mathscr{O}_{S}\right)=0$.
Proof. Since π is radical, we have $c_{2}(S)=c_{2}(X)$. Since $c_{2}(X)=0$, we have $c_{2}(S)=0$. By Noether's formula, we have $\chi\left(S, \mathcal{O}_{S}\right)=\left(K_{S}^{2}+c_{2}(S)\right) / 12=0$.

Take any point \tilde{Q} among \tilde{Q}_{i} 's. We set $\underset{\sim}{Q}=F(\tilde{Q})$. Let x be a local parameter at \tilde{Q}. We denote by m the order of zero of Δ at \tilde{Q}. Then, Δ is expressed as

$$
\begin{equation*}
\Delta=u x^{m} \frac{\partial}{\partial x} \tag{3.3}
\end{equation*}
$$

where u is a unit at \tilde{Q}. As we see above, $f^{-1}(Q)=p F$ is a wild fiber. By Lemma 2.2, we have $m \geq 2$. We set $\pi^{-1}(F)=\tilde{E}$. Then, we have $\tilde{E}=\operatorname{pr}^{-1}(\tilde{Q})$. Since we have the natural isomorphism

$$
\begin{equation*}
H^{0}\left(\ell \tilde{E}, \mathcal{O}_{\not \subset E}\right) \simeq k[x] /\left(x^{\prime}\right) \tag{3.4}
\end{equation*}
$$

we see that $\left\{1, x, \ldots, x^{\ell-1}\right\}$ is a basis of $H^{0}\left(\ell \tilde{E}, \mathcal{O}_{t \tilde{E}}\right)$. Let z be a point on F in S, and \tilde{z} a point on \tilde{E} in X such that $\pi(\tilde{z})=z$. Let $\operatorname{Spec}(R)$ be an affine open neighbourhood of \tilde{z}, and \tilde{m} the maximal ideal of R which corresponds to \tilde{z}. We set $A=R_{\tilde{m}} \simeq\left(\mathcal{O}_{X}\right)_{\tilde{z}}$. We set $V=\operatorname{Spec} R^{D}$ and $m=R^{D} \cap \tilde{m}$. Then V is an affine open neighborhood of z, and \boldsymbol{m} is the maximal ideal which corresponds to z. We easily see $A^{D}=\left(R^{D}\right)_{m}=\left(\mathcal{O}_{S}\right)_{z}$. Let y be a local equation of F at z. Since $\pi^{-1}(F)=\tilde{E}$, we have $y=v x$ in A with a unit v on \tilde{E}. Then, we have

$$
\left(\mathcal{O}_{\ell \tilde{E}}\right)_{z} \simeq A /\left(x^{\ell}\right) \quad \text { and } \quad\left(\mathcal{O}_{\ell F}\right)_{z} \simeq A^{D} /\left(y^{\prime}\right)
$$

and we have the natural inclusion

$$
\begin{equation*}
A^{D} /\left(y^{\prime}\right) \subset A /\left(x^{f}\right) \tag{3.5}
\end{equation*}
$$

By (3.3), we have

$$
D\left(x^{i}\right)=i u x^{m+i-1}
$$

Since $m \geq 2$ by the assumption on D, D induces a rational vector field on the subscheme $\ell \tilde{E}$, especially on Spec $A /\left(x^{\ell}\right)$, and we have

$$
\begin{equation*}
A^{D} /\left(y^{R}\right) \subset\left(A /\left(x^{t}\right)\right)^{D} \tag{3.6}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
H^{\circ}\left(\ell F, \mathscr{O}_{\ell F}\right) \varsigma\left(H^{0}\left(\ell \tilde{E}, \mathcal{O}_{\ell \tilde{\mathrm{E}}}\right)\right)^{D} \tag{3.7}
\end{equation*}
$$

We express the point \tilde{z} of $X=E \times C$ as $\tilde{z}=\left(\tilde{z}_{1}, \tilde{Q}\right)$ where $\tilde{z}_{1} \in E$ and $\tilde{Q} \in C$. By Lemma 2.1, there exists a rational function f on E such that

$$
\begin{equation*}
\delta(f)=1 \tag{3.8}
\end{equation*}
$$

and such that f is regular at \tilde{z}_{1}. We naturally regard f as a rational function on X. We set for $1 \leq \alpha \leq p-1$

$$
\begin{equation*}
F_{i \alpha}=\left\{(-1)^{\alpha} \frac{1}{\alpha!} \sum_{\beta=1}^{\alpha}\left(\prod_{\gamma=0}^{\beta-1}(i-\gamma)\right) h_{\alpha \beta} x^{i-\beta}\right\} f^{\alpha}, \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{i}=\sum_{\alpha=1}^{p-1} F_{i \alpha}+x^{i} \tag{3.10}
\end{equation*}
$$

Then, we have the following two lemmas.

Lemma 3.2. Assume $1+\ell-m \leq i \leq \ell-1$ and $i \geq 1$. Then,

$$
F_{i \alpha} \in A \quad \text { and } \quad \operatorname{ord}_{\tilde{E}} F_{i \alpha} \geq(\alpha-1)(m-1)+\ell .
$$

Proof. The former part is trivial. As for the latter part, by assumption we have

$$
\operatorname{ord}_{\tilde{E}} F_{i x} \geq \alpha(m-1)+\beta+i-\beta \geq(\alpha-1)(m-1)+\ell .
$$

Lemma 3.3. Assume $1+\ell-m \leq i \leq \ell-1$ and $i \geq 1$. Then,

$$
g_{i}=x^{i} \text { in } A /\left(x^{\prime}\right) \text { and } g_{i} \in A^{D} .
$$

Proof. The former part follows from Lemma 3.2. It is clear that $g_{i} \in A$. Using the notation in (2.1), by (3.8) we have

$$
\begin{aligned}
\delta\left(g_{i}\right)= & \sum_{\alpha=1}^{p-1}\left\{(-1)^{\alpha} \frac{1}{(\alpha-1)!} \sum_{\beta=1}^{\alpha}\left(\prod_{\gamma=0}^{\beta-1}(i-\gamma)\right) h_{\alpha \beta} x^{i-\beta}\right\} f^{\alpha-1} \\
= & \sum_{\alpha=0}^{p-2}\left\{(-1)^{\alpha+1} \frac{1}{\alpha!} \sum_{\beta=1}^{\alpha+1}\left(\prod_{\gamma=0}^{\beta-1}(i-\gamma)\right) h_{\alpha+1 \beta} x^{i-\beta}\right\} f^{\alpha}, \\
h \frac{\partial g_{i}}{\partial x}= & h\left\{\sum _ { \alpha = 1 } ^ { p - 1 } \left((-1)^{\alpha} \frac{1}{\alpha!} \sum_{\beta=1}^{\alpha}\left(\prod_{\gamma=0}^{\beta}(i-\gamma)\right) h_{\alpha \beta} x^{i-\beta-1}\right.\right. \\
& \left.\left.+(-1)^{\alpha} \frac{1}{\alpha!} \sum_{\beta=1}^{\alpha}\left(\prod_{\gamma=0}^{\beta-1}(i-\gamma)\right) h_{\alpha \beta}^{\prime} x^{i-\beta}\right) f^{\alpha}\right\}+i h x^{i-1} \\
= & \sum_{\alpha=1}^{p-1}\left\{(- 1) ^ { \alpha } \frac { 1 } { \alpha ! } \left(\sum_{\beta=2}^{\alpha+1}\left(\prod_{\gamma=0}^{\beta-1}(i-\gamma)\right) h h_{\alpha, \beta-1} x^{i-\beta}\right.\right. \\
& \left.\left.+\sum_{\beta=1}^{\alpha}\left(\prod_{\gamma=0}^{\beta-1}(i-\gamma)\right) h h_{\alpha \beta}^{\prime} x^{i-\beta}\right) f^{\alpha}\right\}+i h x^{i-1} \\
= & \sum_{\alpha=1}^{p-1}\left\{(- 1) ^ { \alpha } \frac { 1 } { \alpha ! } \left(i h_{\alpha 1}^{\prime} h x^{i-1}+\sum_{\beta=2}^{\alpha}\left(\prod_{\gamma=0}^{\beta-1}(i-\gamma)\right) h\left(h_{\alpha, \beta-1}+h_{\alpha \beta}^{\prime}\right) x^{i-\beta}\right.\right. \\
& \left.\left.+\left(\prod_{\gamma=0}^{\alpha}(i-\gamma)\right) h h_{\alpha \alpha} x^{i-\alpha-1}\right) f^{\alpha}\right\}+i h x^{i-1} \\
= & \sum_{\alpha=1}^{p-1}\left\{(- 1) ^ { \alpha } \frac { 1 } { \alpha ! } \left(i h_{\alpha+1,1} x^{i-1}+\sum_{\beta=2}^{\alpha}\left(\prod_{\gamma=0}^{\beta-1}(i-\gamma)\right) h_{\alpha+1, \beta} x^{i-\beta}\right.\right. \\
= & \sum_{\alpha=1}^{p-1}\left\{(-1)^{x} \frac{1}{\alpha!}\left(\sum_{\beta=1}^{\alpha+1}\left(\prod_{\gamma=0}^{\beta-1}(i-\gamma)\right) h_{\alpha+1, \beta}^{\alpha} x^{i-\beta}\right) f^{\alpha}\right\}+i h x^{i-1} .
\end{aligned}
$$

By $h_{11}=h$ and $h_{p \beta}=0(1 \leq \beta \leq p-1)$, we have

$$
\begin{aligned}
D\left(g_{i}\right)= & (-1) i h_{11} x^{i-1} \\
& +(-1)^{p-1} \frac{1}{(p-1)!} \sum_{\beta=1}^{p}\left(\prod_{\gamma=0}^{\beta-1}(i-\gamma)\right) h_{p \beta} x^{i-\beta} f^{p-1}+i h x^{i-1} \\
= & (-1)^{p-1} \frac{1}{(p-1)!}\left(\prod_{\gamma=0}^{p-1}(i-\gamma)\right) h_{p p} x^{i-p} f^{p-1} .
\end{aligned}
$$

Since $\prod_{\gamma=0}^{p-1}(i-\gamma) \equiv 0 \bmod p$, we have

$$
D\left(g_{i}\right)=0
$$

hence, $g_{i} \in A^{D}$.
We denote by V_{1} the subspace of $H^{0}\left(\ell \tilde{E}, \mathcal{O}_{\ell \tilde{E}}\right)$ spanned by $x^{p i}$ s ($p i \leq \ell-1, i \geq 0$), and by V_{2} the subspace of $H^{0}\left(\ell \tilde{E}, \mathcal{O}_{\ell \tilde{E}}\right)$ spanned by x^{i} 's $(1+\ell-m \leq i \leq \ell-1, i \geq 0$, $i \not \equiv 0 \bmod p)$. Since $x^{p i}$ s $(i \geq 0)$ are elements of A^{D} for each local ring A at any point of \tilde{E}, we see $V_{1} \subset H^{0}\left(\ell F, \mathcal{O}_{\ell F}\right)$. Since $D\left(x^{i}\right)=0(1+\ell-m \leq i \leq \ell-1)$ in $A /\left(x^{\ell}\right)$ by $m \geq 2$, we have $x^{i} \in\left(A /\left(x^{\ell}\right)\right)^{D}$. By (3.6) and Lemma 3.3, we have $x^{i} \in A^{D} /\left(y^{\ell}\right)$. Therefore, we have $V_{2} \subset H^{0}\left(\ell F, \mathcal{O}_{\ell F}\right)$. Hence, we have

$$
\begin{equation*}
V_{1} \oplus V_{2} \subset H^{0}\left(\ell F, \mathcal{O}_{\ell F}\right) \subsetneq\left(H^{0}\left(\ell \tilde{E}, \mathcal{O}_{\ell \tilde{E}}\right)\right)^{D} \tag{3.11}
\end{equation*}
$$

We denote by V_{3} the subspace of $H^{0}\left(\ell \tilde{E}, \mathcal{O}_{\neq \tilde{E}}\right)$ spanned by x^{i} 's $(1 \leq i \leq l-m$, $i \neq 0 \bmod p$). Then, we have

$$
\begin{equation*}
H^{0}\left(\ell F, \mathcal{O}_{\ell F}\right) \oplus V_{3}=H^{0}\left(\ell \widetilde{E}, \mathcal{O}_{\ell \tilde{E}}\right) \quad \text { and } \quad V_{3} \cap H^{0}\left(\ell \widetilde{E}, \mathcal{O}_{\ell \tilde{E}}\right)^{D}=0 \tag{3.12}
\end{equation*}
$$

By (3.11) and (3.12), we have the following lemma.
Lemma 3.4. $H^{0}\left(\ell F, \mathcal{O}_{\ell F}\right) \simeq V_{1} \oplus V_{2}=\left(H^{0}\left(\ell \widetilde{E}, \mathcal{O}_{\ell \tilde{E}}\right)\right)^{D}$.

For a real number α, we denote by $[\alpha]$ the integral part of α.

Theorem 3.5. Under the notation above, the multiple fibers $f^{-1}\left(Q_{i}\right)=p E_{i}(i=1,2, \ldots, \lambda)$ are wild fibers, and we have:

$$
\operatorname{dim}_{k} H^{0}\left(\ell F, \mathcal{O}_{\ell F}\right)= \begin{cases}\ell & \text { if } 1 \leq \ell \leq m \tag{1}\\ m+\left[\frac{\ell-m}{p}\right] & \text { if } m<\ell\end{cases}
$$

(2) The smallest positive integer n_{1} such that $\left.\operatorname{ord} \mathcal{O}_{S}(F)\right|_{n_{1} F}=p$ is equal to m.

$$
\begin{equation*}
K_{S} \sim f^{*}\left(K_{C}+\sum_{i=1}^{\lambda}\left[\frac{m_{i}(p-1)}{p}\right] Q_{i}\right)+\sum_{i=1}^{\lambda} a_{i} E_{i} \tag{3}
\end{equation*}
$$

where

$$
a_{i}= \begin{cases}p-\left(m_{i}-\left[\frac{m_{i}}{p}\right] p\right) & \text { if } m_{i} \not \equiv 0 \bmod p \\ 0 & \text { if } m_{i} \equiv 0 \bmod p\end{cases}
$$

Proof. As we have already shown, $f^{-1}(Q)=p F$ is a wild fiber.
(1) By definition, we have

$$
\operatorname{dim} V_{1}+\operatorname{dim} V_{2}= \begin{cases}\ell & \text { if } 1 \leq \ell \leq m \\ (\ell-1)-(\ell-m)+1-\left[\frac{\ell-m}{p}\right] & \text { if } m<\ell\end{cases}
$$

Therefore, by Lemma 3.4, we complete the proof of (1).
(2) In the canonical divisor formula as in (1.1), we denote by a the a_{i} corresponding to the wild fiber $p F$. Then, we have

$$
\omega_{n}=\left.\mathcal{O}_{S}((a+n) F)\right|_{n F}
$$

and

$$
v=\left.\operatorname{ord} \Theta_{S}(F)\right|_{F}=1, \quad p=v p^{1}
$$

Therefore, in expression (1.4), we have $\gamma=1$. Using the notation in Section 1, by the definition of n_{1}, we have

$$
\left.\operatorname{ord} \mathcal{O}_{S}(F)\right|_{n F}=1 \quad \text { for } 1 \leq n<n_{1}
$$

therefore, ω_{n} is trivial for $1 \leq n<n_{1}$. Therefore, by Lemma 1.1 , we have

$$
\begin{equation*}
\operatorname{dim} H^{0}\left(n F, \mathcal{O}_{n F}\right)=\operatorname{dim} H^{0}\left((n-1) F, \mathcal{O}_{(n-1) F}\right)+1 \quad \text { for } 1<n<n_{1} \tag{3.13}
\end{equation*}
$$

In case $n=n_{1}$, we have ord $\left.\mathcal{O}_{S}(F)\right|_{n_{1} F}=p$ by the definition of n_{1}. By Lemma $1.2, \omega_{n_{1}}$ is trivial; therefore, we have by Lemma 1.1

$$
\begin{equation*}
\operatorname{dim} H^{0}\left(n_{1} F, \mathscr{O}_{n_{1} F}\right)=\operatorname{dim} H^{0}\left(\left(n_{1}-1\right) F, \mathcal{O}_{\left(n_{1}-1\right) F}\right)+1 \tag{3.14}
\end{equation*}
$$

and $p \mid a+n_{1}$. Therefore, $p \nmid a+\left(n_{1}+1\right)$ and $\omega_{n_{1}+1}$ is not trivial. By Lemma 1.1, we have

$$
\begin{equation*}
\operatorname{dim} H^{0}\left(\left(n_{1}+1\right) F, \mathcal{O}_{\left(n_{1}+1\right) F}\right)=\operatorname{dim} H^{\mathrm{o}}\left(n_{1} F, \mathcal{O}_{n_{1} F}\right) \tag{3.15}
\end{equation*}
$$

On the other hand, by the result in (1), we know

$$
\begin{align*}
& \operatorname{dim} H^{0}\left(\ell F, \mathcal{O}_{\ell F}\right)=\ell=\operatorname{dim} H^{0}\left((\ell-1) F, \mathcal{O}_{(\ell-1) F}\right)+1 \quad \text { for } 1<\ell \leq m \\
& \operatorname{dim} H^{0}\left((m+1) F, \mathcal{O}_{(m+1) F}\right)=m+\left[\frac{(m+1)-m}{p}\right]=m=\operatorname{dim} H^{0}\left(m F, \mathcal{O}_{m F}\right) \tag{3.16}
\end{align*}
$$

Comparing (3.13), (3.14) and (3.15) with (3.16), we conclude $n_{1}=m$.
(3) By Lemma 1.3, there exists a positive integer h such that $a=p h-n_{1}=p h-m$. Since $0 \leq a \leq p-1$, we have

$$
a= \begin{cases}p-\left(m-\left[\frac{m}{p}\right] p\right) & \text { if } m \neq 0 \bmod p \\ 0 & \text { if } m \equiv 0 \bmod p\end{cases}
$$

Now, we consider the canonical divisor formula of S as in (1.1). In $R^{1} f_{*} \mathcal{O}_{s} \simeq \mathscr{L} \oplus \mathscr{F}$, we express \mathscr{F} as

$$
\mathscr{T}=\mathscr{T}_{1} \oplus \cdots \oplus \mathscr{F}_{\lambda}, \quad \operatorname{Supp} \mathscr{F}_{i}=Q_{i} \quad(i=1,2, \ldots, \lambda)
$$

We set $t_{i}=$ length \mathscr{T}_{i}. Then, we have length $\mathscr{T}=t=\sum_{i=1}^{\lambda} t_{i}$, and by Corollary 1.5 and (2), we have

$$
t_{i}=\left[\frac{m_{i}(p-1)}{p}\right]
$$

Therefore, we get the formula in (3).
Corollary 3.6. $a_{i} \neq p-1(i=1,2, \ldots, \hat{\lambda})$.
Proof. This follows from Theorem 3.5(3) and Lemma 2.2.
Theorem 3.7. Under the same notation as in Theorem 3.5, assume, moreover, $C \simeq \mathbb{P}^{1}$. Then, $B \simeq \mathbb{P}^{1}$ and the Frobenius mapping F on $H^{1}\left(S, \mathcal{O}_{S}\right)$ is the zero mapping.

Proof. The fact $B \simeq \mathbb{P}^{1}$ is clear. In the diagram (3.2), take a general point P of B. Then, $f^{1}(P)=G$ is an elliptic curve, and $\pi^{-1}(G)=p \tilde{E}$ with a general fiber \tilde{E} of pr. Therefore, $\left.\pi\right|_{\tilde{E}}: \tilde{E} \rightarrow G$ is an isomorphism. We set $h=\left.\pi\right|_{\tilde{E}}$. We have a diagram

where g and \tilde{g} are natural inclusions. By an exact sequence

$$
0 \rightarrow \mathcal{O}_{S}(-G) \rightarrow \mathcal{O}_{S} \rightarrow \mathcal{O}_{G} \rightarrow 0
$$

we have a long exact sequence

$$
\begin{aligned}
& \longrightarrow H^{1}\left(S, \mathscr{O}_{S}\right) \xrightarrow{9^{*}} H^{1}\left(G, \mathscr{O}_{G}\right) \longrightarrow H^{2}\left(S, \mathcal{O}_{S}(-G)\right) \\
& \longrightarrow H^{2}\left(S, \mathcal{O}_{S}\right) \longrightarrow 0
\end{aligned}
$$

By the Serre duality $H^{2}\left(S, \mathcal{O}_{S}(-G)\right) \simeq H^{\circ}\left(S, \mathcal{O}_{S}\left(K_{S}+G\right)\right.$, we have

$$
\operatorname{dim} H^{2}\left(S, \mathcal{O}_{S}(-G)\right)=\operatorname{dim} H^{2}\left(S, \mathcal{O}_{S}\right)+1
$$

Since $H^{1}\left(G, \mathcal{O}_{G}\right) \simeq k$, we see that g^{*} is a zero mapping. By the diagram (3.17), we have the diagram

Since g^{*} is a zero mapping and h^{*}, \tilde{g}^{*} are isomorphisms, we conclude that π^{*} is a zero mapping.

Now, we take an element α of $H^{1}\left(S, \mathcal{O}_{S}\right)$. Take an affine open covering $\left\{U_{i}\right\}_{i \in I}$ of S, and express α as a \check{C} ech cocycle $\left\{\alpha_{i j}\right\}_{i, j \in I}$ with respect to this covering. Set $V_{i}=\pi^{-1}\left(U_{i}\right)$. Since π is a finite morphism, $\left\{V_{i}\right\}_{i \in I}$ is an affine open covering of $E \times \mathbb{P}^{1}$. Since $\pi^{*} \alpha=0$, there exists a regular function α_{i} on V_{i} such that

$$
\pi^{*}\left(\alpha_{i j}\right)=\alpha_{j}-\alpha_{i}
$$

Therefore, we have $\pi^{*}\left(\alpha_{i j}^{p}\right)=\alpha_{j}^{p}-\alpha_{i}^{p}$. Since $\alpha_{i}^{p} \in k\left(E \times \mathbb{P}^{1}\right)^{p}$ and $k\left(E \times \mathbb{P}^{1}\right)^{p} \subset k(S)$, there exists a rational function β_{i} on U_{i} such that $\pi^{*} \beta_{i}=\alpha_{i}^{p}$. Since α_{i} is regular on V_{i}, β_{i} is also regular on U_{i}. Hence, we have

$$
\alpha_{i j}^{p}=\beta_{j}-\beta_{i}
$$

with a regular function β_{i} on $U_{i}(i \in I)$. This means that $F(\alpha)=0$ in $H^{1}\left(S, \mathcal{O}_{S}\right)$.

4. A characterization of certain elliptic surfaces

Let $f: S \rightarrow \mathbb{P}^{1}$ be an elliptic surface which has the multiple fibers $p E_{i}(i=1,2, \ldots, \hat{\lambda}$; $\lambda \geq 1)$ with multiplicity p. We set $f\left(p E_{i}\right)=Q_{i}(i=1, \ldots, \lambda)$. We assume

$$
\begin{equation*}
\chi\left(S, \mathcal{O}_{S}\right)=0 \tag{4.1}
\end{equation*}
$$

Then, as is easily proved, f has no degenerate fibres except over $f\left(p E_{i}\right)=Q_{i}$ $(i=1, \ldots, \lambda)$. We fix a general point P of \mathbb{P}^{1}. A canonical divisor of S is given by

$$
\begin{equation*}
K_{S} \sim f^{*}((-2+t) P)+\sum_{i=1}^{\lambda} a_{i} E_{i} \tag{4.2}
\end{equation*}
$$

where t is the length of the torsion part of $R^{1} f_{*} \mathcal{O}_{S}$, and $0 \leq a_{i} \leq p-1(i=1,2, \ldots, \lambda)$. We assume two more conditions:

$$
\begin{equation*}
a_{i} \neq p-1 \quad(i=1,2, \ldots, \lambda) \tag{4.3}
\end{equation*}
$$

The Frobenius mapping \boldsymbol{F} on $H^{1}\left(S, \mathcal{O}_{s}\right)$ is the zero mapping.
Lemma 4.1. Under the assumptions (4.1), (4.3) and (4.4), all multiple fibers $p E_{i}$ are wild, and any fiber off is either a supersingular elliptic curve or a multiple fiber of a supersingular elliptic curve.

Proof. By $\lambda \geq 1$, we have some multiple fibers. Since $a_{i} \neq p-1, p E_{i}$ is a wild fiber. By the exact sequence

$$
0 \rightarrow \mathcal{O}_{S}\left(-E_{i}\right) \rightarrow \mathcal{O}_{S} \rightarrow \mathscr{O}_{E_{i}} \rightarrow 0
$$

we have a long exact sequence

$$
\begin{aligned}
& \longrightarrow H^{1}\left(S, \mathcal{O}_{S}\right) \xrightarrow{r} H^{1}\left(E_{i}, \mathscr{O}_{E_{i}}\right) \longrightarrow H^{2}\left(S, \mathcal{O}_{S}\left(-E_{i}\right)\right) \\
& \longrightarrow H^{2}\left(S, \mathcal{O}_{S}\right) \longrightarrow 0
\end{aligned}
$$

By the Serre duality and $a_{i} \neq p-1$, we have

$$
H^{2}\left(S, \mathcal{O}_{S}\left(-E_{i}\right)\right) \simeq H^{0}\left(S, \mathcal{O}_{S}\left(K_{S}+E_{i}\right)\right) \simeq H^{0}\left(S, \mathcal{O}_{S}\left(K_{S}\right)\right) \simeq H^{2}\left(S, \mathcal{O}_{S}\right)
$$

Since $H^{1}\left(E_{i}, \mathcal{O}_{E_{i}}\right) \simeq k$, we see that r is surjective. By assumption, the action of the Frobenius mapping F on $H^{1}\left(S, \mathcal{O}_{S}\right)$ is trivial, and so is the action on $H^{1}\left(E_{i}, \mathscr{O}_{E_{i}}\right)$. Therefore, E_{i} is a supersingular elliptic curve.

Since $\chi\left(S, \mathcal{O}_{S}\right)=0$, we have $c_{2}(S)=2-4 q(S)+b_{2}(S)=0$ by Noether's formula. Therefore, we have $q(S) \geq 1$. Since the base curve is \mathbb{P}^{1}, we have $q(S) \leq 1$ (cf. [4, Lemma 3.4]). Therefore, $q(S)=1$ and the Albanese mapping $\psi: S \rightarrow \operatorname{Alb}(S)$ is surjective (cf. [4, Lemma 3.4]). Therefore, for any fiber $f^{-1}(P)\left(P \in P^{1}\right)$, the restriction of ψ on $f^{-1}(P)$ is surjective. This means that E_{i} is isogenous to $\operatorname{Alb}(S)$ and that any regular fiber is also isogenous to $\mathrm{Alb}(S)$. Hence, any regular fiber is also supersingular.

Theorem 4.2. Let $f: S \rightarrow \mathbb{P}^{1}$ be an elliptic surface with multiple fibers $p E_{i}$ $(i=1,2, \ldots, \lambda ; \lambda \geq 1)$ with multiplicity p. Assume that the elliptic surface satisfies the conditions (4.1), (4.3) and (4.4). Then, the elliptic surface is constructed as in (3.1) with $C=P^{1}$. Namely, there exist a supersingular elliptic curve, a non-zero regular vector field δ on E and a non-zero rational vector field Δ on \mathbb{P}^{1} such that $S=\left(E \times \mathbb{P}^{1}\right)^{D}$ with $D=\delta+\Delta$ and such that $f: S \rightarrow\left(\mathbb{P}^{1}\right)^{4}=\mathbb{P}^{1}$ is the natural projection.

Proof. We take a point P_{i} among P_{i} 's $(i=1,2, \ldots, \lambda)$. We denote it by P_{0}, and we set $p E_{0}=f^{-1}\left(P_{0}\right)$. Let x be a local coordinate of an affine line \mathbb{A}^{1} in \mathbb{P}^{1}. We may assume that $x=0$ defines the point P_{0}, and that the fiber E_{∞} over the point P_{∞} at infinity is a regular fiber. Multiplying x, we have an isomorphism

$$
\times x: \mathcal{O}_{s}\left(-E_{\infty}\right) \simeq \mathcal{O}_{s}\left(-p E_{0}\right) .
$$

Therefore, we have an isomorphism

$$
\begin{equation*}
\times x: H^{1}\left(S, \mathscr{O}_{S}\left(-E_{\infty}\right)\right) \simeq H^{1}\left(S, \mathcal{O}_{S}\left(-p E_{0}\right)\right) . \tag{4.5}
\end{equation*}
$$

By the exact sequence

$$
0 \longrightarrow \mathcal{O}_{S}\left(-E_{\infty}\right) \longrightarrow \mathcal{O}_{S} \longrightarrow \mathcal{O}_{E_{x}} \longrightarrow 0
$$

we have a long exact sequence

$$
\begin{aligned}
0 & \longrightarrow H^{1}\left(S, \mathcal{O}_{S}\left(-E_{\infty}\right)\right) \longrightarrow H^{1}\left(S, \mathcal{O}_{S}\right) \longrightarrow H^{1}\left(E_{\infty}, \mathcal{O}_{E_{\infty}}\right) \\
& \longrightarrow H^{2}\left(S, \mathcal{O}_{S}\left(-E_{\infty}\right)\right) \longrightarrow H^{2}\left(S, \mathcal{O}_{S}\right) \longrightarrow 0
\end{aligned}
$$

Since $\operatorname{dim} H^{2}\left(S, \mathcal{O}_{S}\left(-E_{\infty}\right)\right)=\operatorname{dim} H^{2}\left(S, \mathcal{O}_{S}\right)+1$ and $\operatorname{dim} H^{1}\left(E_{\infty}, \mathcal{O}_{E_{\alpha}}\right)=1$, we have an isomorphism

$$
\begin{equation*}
H^{1}\left(S, \mathcal{O}_{S}\left(-E_{\infty}\right)\right) \simeq H^{1}\left(S, \mathcal{O}_{S}\right) \tag{4.6}
\end{equation*}
$$

By (4.5) and (4.6), we have an isomorphism

$$
\begin{equation*}
\varphi: H^{1}\left(S, \mathcal{O}_{s}\right) \simeq H^{1}\left(S, \mathcal{O}_{s}\left(-E_{\infty}\right)\right) \simeq H^{1}\left(S, \mathcal{O}_{s}\left(-p E_{0}\right)\right) \tag{4.7}
\end{equation*}
$$

Considering the commutative diagram

$$
\begin{array}{cc}
0 \longrightarrow \hat{O}_{S}\left(-E_{0}\right) \longrightarrow \mathcal{O}_{S} \longrightarrow \hat{O}_{E_{o}} \longrightarrow 0 \text { (exact) } \\
\uparrow & { }^{1} \\
0 \longrightarrow \hat{O}_{S}\left(-p E_{0}\right) \longrightarrow \mathcal{O}_{S} \longrightarrow \hat{O}_{p E_{0}} \longrightarrow 0 \text { (exact), }
\end{array}
$$

we have a diagram

$$
\begin{array}{cc}
H^{1}\left(S, \mathcal{O}_{S}\left(-E_{0}\right)\right) & H^{1}\left(S, \mathcal{O}_{S}\right) \xrightarrow{p} H^{1}\left(S, \mathcal{O}_{E_{0}}\right) \longrightarrow 0 \\
\uparrow & \| \tag{4.8}\\
H^{1}\left(S, \mathcal{O}_{S}\left(-p E_{0}\right)\right) \xrightarrow{\phi} H^{1}\left(S, \mathcal{O}_{S}\right) \xrightarrow{p_{1}} H^{1}\left(S, \mathcal{O}_{p E_{0}}\right),
\end{array}
$$

where the first and the second rows are exact by the assumption $a_{i} \neq p-1$. Using (4.7) and (4.8), we have a homomorphism

$$
\begin{align*}
& \phi \circ \varphi: H^{1}\left(S, \mathcal{O}_{s}\right) \xrightarrow[\longrightarrow]{\longrightarrow} H^{1}\left(S, \mathcal{O}_{s}\left(-E_{\infty}\right)\right) \xrightarrow{x x} H^{1}\left(S, \mathcal{O}_{s}\left(-p E_{0}\right)\right) \\
& \xrightarrow{\phi} H^{1}\left(S, \mathcal{O}_{s}\right) . \tag{4.9}
\end{align*}
$$

We know $H^{1}\left(S, \mathcal{O}_{E_{0}}\right) \simeq k$. Take an element α of $H^{1}\left(S, \mathcal{O}_{S}\right)$ such that $\rho(\alpha) \neq 0$. We consider elements of $H^{1}\left(S, \mathcal{O}_{S}\right)$ given by

$$
\begin{equation*}
\alpha, \phi \circ \varphi(\alpha),(\phi \circ \varphi)^{2}(\alpha), \ldots,(\phi \circ \varphi)^{n}(\alpha) . \tag{4.10}
\end{equation*}
$$

Since $H^{1}\left(S, \mathcal{O}_{S}\right)$ is finite-dimensional, the elements of (4.10) are linearly dependent if n is large enough. We take the smallest integer n such that the elements of (4.10) are linearly dependent. Then, there exists $\left(b_{0}, b_{1}, \ldots, b_{n}\right) \in k^{n+1}$ such that

$$
\begin{equation*}
b_{0} \alpha+b_{1} \phi \circ \varphi(\alpha)+\cdots+b_{n}(\phi \circ \varphi)^{n}(\alpha)=0 \quad \text { and } \quad\left(b_{0}, b_{1}, \ldots, b_{n}\right) \neq 0 . \tag{4.11}
\end{equation*}
$$

Suppose $b_{0} \neq 0$. Then, we have

$$
\alpha=-\phi\left\{\frac{b_{1}}{b_{0}} \varphi(\alpha)+\cdots+\frac{b_{n}}{b_{0}} \varphi^{\circ}\left(\phi^{\circ} \varphi\right)^{n-1}(\alpha)\right\} .
$$

Therefore, we have $\rho(\alpha)=0$. A contradiction. Therefore, we have $b_{0}=0$. We take the smallest integer ℓ such that $b_{\ell} \neq 0$. We set

$$
\beta=b_{\ell} \alpha+b_{\ell+1} \phi^{\circ} \varphi(\alpha)+\cdots+b_{n}\left(\phi^{\circ} \varphi\right)^{n-1}(\alpha) .
$$

Since $b_{\ell} \neq 0$, we have

$$
\begin{equation*}
\rho(\beta)=\rho(b, \alpha) \neq 0 \tag{4.12}
\end{equation*}
$$

and by (4.11) we have

$$
\begin{equation*}
(\phi \circ \varphi)^{\prime}(\beta)=0 \tag{4.13}
\end{equation*}
$$

We take an affine open covering $\left\{U_{i}\right\}_{i \in I}$ of S, and we represent β by a \check{C} ech cocycle $\beta=\left\{\beta_{i j}\right\} \quad\left(\beta_{i j} \in \Gamma\left(U_{i} \cap U_{j}, \mathcal{O}_{S}\right)\right)$ with respect to $\left\{U_{i}\right\}_{i \in I}$. By (4.13), there exist $\beta_{i} \in \Gamma\left(U_{i}, \mathcal{O}_{S}\right)(i \in I)$ such that

$$
\begin{equation*}
x^{\prime} \beta_{i j}=\beta_{j}-\beta_{i} \quad \text { on } U_{i} \cap U_{j}(i, j \in I) \tag{4.14}
\end{equation*}
$$

On the other hand, by the assumption (4.4), there exist $h_{i} \in \Gamma\left(U_{i}, \mathcal{O}_{S}\right)(i \in I)$ such that

$$
\begin{equation*}
\beta_{i j}^{p}=h_{j}-h_{i} \quad \text { on } U_{i} \cap U_{j}(i, j \in I) . \tag{4.15}
\end{equation*}
$$

By (4.14) and (4.15), we have

$$
\begin{equation*}
h_{i}-\left(\frac{\beta_{i}}{x^{\prime}}\right)^{p}=h_{j}-\left(\frac{\beta_{j}}{x^{\prime}}\right)^{p} \quad \text { on } U_{i} \cap U_{j}(i, j \in I) \tag{4.16}
\end{equation*}
$$

We set

$$
\begin{equation*}
h=h_{i}-\left(\frac{\beta_{i}}{x^{\prime}}\right)^{p} \quad \text { on } U_{i}(i \in I) \tag{4.17}
\end{equation*}
$$

Then, by (4.16) h is a rational function on S. The pole of h exists only on E_{0}. Since $f_{*} \mathscr{O}_{s}=\mathscr{O}_{\mathbb{P}^{1}}$, we see that there exists a rational function $g(x)$ on \mathbb{P}^{1} such that

$$
\begin{equation*}
f^{*}(g(x))=h . \tag{4.18}
\end{equation*}
$$

We set

$$
\begin{equation*}
\omega=d h_{i} \quad \text { on } \quad U_{i}(i \in I) \tag{4.19}
\end{equation*}
$$

Since β is not zero in $H^{1}\left(S, \mathcal{O}_{S}\right)$, by (4.15) ω is a non-zero 1 -form on S. Moreover, by (4.17) and (4.18) we have

$$
\begin{equation*}
\omega=f^{*}(d g(x)) \tag{4.20}
\end{equation*}
$$

Now, we consider the purely inseparable covering X of S of degree p defined by

$$
\left\{\begin{array}{lll}
z_{i}^{n}=h_{i} & \text { on } U_{i} & (i \in I) \tag{4.21}\\
z_{j}=z_{i}+\beta_{i j} & \text { on } U_{i} \cap U_{j} & (i, j \in I)
\end{array}\right.
$$

We denote by π the natural morphism $X \rightarrow S$. Since $\beta \neq 0$, this covering is not trivial. By (4.19) and (4.21), we have $\pi^{*} \omega=0$. Therefore, by (4.20) we have $d\left(\pi^{*} f^{*}(g(x))\right)=0$. Therefore, there exists a rational function \tilde{g} on X such that

$$
\tilde{g}^{p}=\pi^{*} f^{*}(g(x))
$$

This means that the base curve \mathbb{P}^{1} is not algebraically closed in the function field $k(X)$. Considering the normalization of this base curve \mathbb{P}^{1} in $k(X)$, we have the following diagram:

where \tilde{S} is the fiber product of S and \mathbb{P}^{1} over \mathbb{P}^{1}, where v is the normalization of X, and $\pi=\tilde{\boldsymbol{F}} \circ \mu$. Since π is a purely inseparable morphism of degree p, we see that \boldsymbol{F} is also a purely inseparable morphism of degree p, that is, the Frobenius morphism. We set

$$
\tilde{f}=f^{\prime} \circ \mu \circ v
$$

Since any fiber of f is either an elliptic curve or a multiple fiber of an eiliptic curve, we see that \tilde{X} is non-singular. By (4.12), the restriction of the covering π on E_{0} is non-trivial. Therefore, $v^{-1} \circ \pi^{-1}\left(E_{0}\right)$ is a regular fiber of $\tilde{f}: \tilde{X} \rightarrow \mathbb{P}^{1}$. On the other hand, $\tilde{f}: \tilde{X} \rightarrow \mathbb{P}^{1}$ is constructed by using the base change by the Frobenius mapping $F: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ as in the diagram (4.22). Therefore, we conclude that $\tilde{f}: \tilde{X} \rightarrow \mathbb{P}^{1}$ has no multiple fibers. Therefore, this elliptic surface has no degenerate fibers. Hence, as is well known, \tilde{X} is isomorphic to $E \times \mathbb{P}^{1}$ with an elliptic curve E, and \tilde{f} is the second projection. By Lemma 4.1, E must be supersingular. Since $\pi \circ \nu$ is radical, by the standard theory of vector field in positive characteristic we complete our proof (cf. [2, Section 3]).

References

[1] E. Bombieri and D. Mumford, Enriques' classification of surfaces in char. p. II., in: W.L. Baily Jr. and T. Shioda, Eds., Complex Analysis and Algebraic Geometry (Iwanami Shoten, Tokyo, and Princeton Univ. Press. Princeton, NJ, 1977) 22-42.
[2] R. Ganong and P. Russel, Derivations with only divisional singularities on rational and ruled surfaces, J. Pure Appl. Algebra 26 (1982) 165-182.
[3」 I. Katsura, Multicanonical systems of elliptic surfaces in small characteristics, Composito Math. 97 (1995) 119-134.
[4] T. Katsura and K. Ueno, On elliptic surfaces in characteristic p, Math. Ann. 272 (1985) 291-330.
[5] M. Raynaud, Surfaces elliptiques et quasi-elliptiques, manuscript.
[6]. A.N. Rudakov and I.R. Shafarevich, Inseparable morphisms of algebraic surfaces, Izv. Acad. Nauk SSSR Ser. Mat. 40 (1976) 1269-1307 (Engl. Transl. Math. USSR Izv. 5 (1976) 1205-1237).

[^0]: * Corresponding author.
 ${ }^{1}$ Partially supported by the Grants-in-Aid for Co-operative Research as well as Scientific Research, the Ministry of Education, Science and Culture, Japan

